Novel ultrananocrystalline diamond probes for high-resolution low-wear nanolithographic techniques.
نویسندگان
چکیده
A hard, low-wear probe for contact-mode writing techniques, such as dip-pen nanolithography (DPN), was fabricated using ultrananocrystalline diamond (UNCD). Molding within anisotropically etched and oxidized pyramidal pits in silicon was used to obtain diamond tips with radii down to 30 nm through growth of UNCD films followed by selective etching of the silicon template substrate. The probes were monolithically integrated with diamond cantilevers and subsequently integrated into a chip body obtained by metal electroforming. The probes were characterized in terms of their mechanical properties, wear, and atomic force microscopy imaging capabilities. The developed probes performed exceptionally well in DPN molecular writing/imaging mode. Furthermore, the integration of UNCD films with appropriate substrates and the use of directed microfabrication techniques are particularly suitable for fabrication of one- and two-dimensional arrays of probes that can be used for massive parallel fabrication of nanostructures by the DPN method.
منابع مشابه
Preventing nanoscale wear of atomic force microscopy tips through the use of monolithic ultrananocrystalline diamond probes.
Nanoscale wear is a key limitation of conventional atomic force microscopy (AFM) probes that results in decreased resolution, accuracy, and reproducibility in probe-based imaging, writing, measurement, and nanomanufacturing applications. Diamond is potentially an ideal probe material due to its unrivaled hardness and stiffness, its low friction and wear, and its chemical inertness. However, the...
متن کاملOrigin of ultralow friction and wear in ultrananocrystalline diamond.
The impressively low friction and wear of diamond in humid environments is debated to originate from either the stability of the passivated diamond surface or sliding-induced graphitization/rehybridization of carbon. We find ultralow friction and wear for ultrananocrystalline diamond surfaces even in dry environments, and observe negligible rehybridization except for a modest, submonolayer amou...
متن کاملMechanics of interaction and atomic-scale wear of amplitude modulation atomic force microscopy probes.
Wear is one of the main factors that hinders the performance of probes for atomic force microscopy (AFM), including for the widely used amplitude modulation (AM-AFM) mode. Unfortunately, a comprehensive scientific understanding of nanoscale wear is lacking. We have developed a protocol for conducting consistent and quantitative AM-AFM wear experiments. The protocol involves controlling the tip-...
متن کاملCryogenic vacuum tribology of diamond and diamond-like carbon films
Friction measurements have been performed on microcrystalline, ultrananocrystalline, and diamond-like carbon DLC films with natural diamond counterfaces in the temperature range of 8 K to room temperature. All films exhibit low friction 0.1 in air at room temperature. In ultrahigh vacuum, microcrystalline diamond quickly wears into a high friction state 0.6 , which is independent of temperature...
متن کاملNitrogen-incorporated ultrananocrystalline diamond and multi-layer-graphene-like hybrid carbon films
Nitrogen-incorporated ultrananocrystalline diamond (N-UNCD) and multi-layer-graphene-like hybrid carbon films have been synthesized by microwave plasma enhanced chemical vapor deposition (MPECVD) on oxidized silicon which is pre-seeded with diamond nanoparticles. MPECVD of N-UNCD on nanodiamond seeds produces a base layer, from which carbon structures nucleate and grow perpendicularly to form s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Small
دوره 1 8-9 شماره
صفحات -
تاریخ انتشار 2005